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g’llci]ltcr]lla]]etaryor  bit determination proljlem has becII tradition-
ally solved using least-squares techniques. I)UC to opcr.atimlal limi-
tations of this method, a Ka]man filter approach has bec]l  proposed
for future missio]ls. ‘1’}IC  proposed a.pproac]l,  known as the enhanced
filter, inc]udcs all spacecraft and me.asurmne[h modcli]lg states  in the
filter. ‘1’he goal of the e]lhanced filter is to increase the accuracy of
the navigat,io]l process while utilizi]lg only I audiometric (1 )oppler  and
range) data.  As an extension to the enhanced filter, all adaptive  orbit
determination approacl  (based  on the Ma:;ill  filter bank)  has been
developed here to process radiometric  data. This adaptive a])proach
call  he uscxl as a systematic method for t,he deter] ninatioll  of the
operation al c]lhanced filter parameters , which am c.urrcnt]y  selected
using ad hoc methods. The  first step in the development of the adap
tive cnha]lced Jili,cr  hank  is t]ie determination of the sig]lificant  errors
in the problem, which is accomplished usi]lg covariance analysis to
d eve.lop all error budget. ‘J’he Mars I’a,t]lfillder  mission is utilized to

demonstrate the effectiveness of the adaptive enhanced filter bank  in
determining variances for the process and measuremalt  Iloise  param-
eters based 011 the tracking data. ‘J’hc resulls  for tile range  data case
show that the adaptive enhanced filter bank  is efrcctive  in selecting
the process and measurement noise variances that match those used
to gcncratc  the data.. Results for the Doppler only case arc not as
conc]usivc, due primarily to linearization eI rors.

1 Introduction

TIIC orbit  dctcrmillatio]]  prob]cm for interplanetary spacecraft involves the calcu-

lation]]  of spacecraft states (i.e. position and velocity) and associated cstimatioIl
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u]lccrtainty  mcasums  based

corrupted by various errors

on information rcceivecl fro]n  mcasurcmcIlts  that  arc

and random noise. q’)Ic motivatio]i  for the work prc-

SCIII,CX1 here is to improve tl)c tools used to ]Jcrfom  I this task. l)UC to reductions in

resources for ]lavigation,  the number of navigation team members will be signifi-

c.a]ltly  rcduccd  for future missions. For mal]y  pad  missions, navigation teams had

twcJ ]ty mcmbcm  or mom, and current projections arc for three or four navigation

Ixmn  members. Combined with the navigation rt~quirelne]lts  for future missions,

tlIc  amouni of work required using current tracking methods is a major burden

givc]l  lJIc size of the Ilavigation  teams. One prol)lem  is the lack of a systematic

mctllod  for dctermiuing  appropriate values for the operational orbit determination

filter. III currcmt  interplanetary navigatio]l  practice, the operational filter parame-

ters, SUCII as time constants, gravitational parameters, ]Ioisc  variances and system

parameters, arc gencral]y  sclectcd by trial and cr] or based 011 experience and corn-

putc7  simulation. TIIe  filter parameters arc sclcctcd a]ld tlIc mcasuremcnlt  da ta

procxxscd.  l~ascd  on the simulation results, the filter parameters may be changed

a]ld tllc data proccsscd  agai]l,  or the current result may lx ac.cc])tcd.  ])uri]lg  this

iterative process, oftcI~ t}lc measurement data is de-weig}itcd,  resulting in cstima-

tio]~ errors that arc gcncra]ly higher than the da{ a requires. ‘1’llis  ad hoc approac]l

to filter tuJ]iI]g, in addition to failing to take full advantage of t,hc inherent  data ac-

curacy, requires a large I]un)ber  of Ilavigatioll  tea]n members to a]]alyze  the results

from the data proccssi~)g. IIespitc the success of this approac]l in tile past,  the

curre]lt  realities do Ilot sul)port  its conti~med  USC. ‘lThc o~bi( detcrmillatio]l  t a s k

must lx comp]etccl  with fewer analysts, similar if not greater tracking accuracy

rcquircnmlts,  and less tracking data, Therefore, a new mctl]odology  is required

for opera.tional intcrpla]lcta,ry  navigation.

OIIC co]]straint  on ally proposed solution to this problcm  is the utilization of
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realistic error sources and lnodc]s  to accurately determine if ihc selected approach

will bc uscfu]  ill the actual tracking process. In additic)l],  the proposed solutioIl

m u s t  i n t e g r a t e  easily  wit]] cu r ren t  Ilavigation  al~proachcs.  A Kalman filter ap-

proacl]  will be used for future interplanetary missions, so the scdution  must  be

compatible with this recursive filter method. I)UC to the desire to minimize track-

ing station U S C, pcrsonnc]  costs and complexity, c{~nventiona]  l)oppler  and ranging

data will bc the data types used in this mlalysis. Finally, the approach must bc

inlplcmm)tablc  ill a modular fashion. This is not only to avoid extensive modifi-

cation) of existing orbit determination software, l)ut to allow the tcstillg  of other

approac]lcs  in a smoother al[d less complicated fashio~).

AloIIg with the change from the least-squares filter to the Kalman filter, another

major clla~lgc  ill tile current filtering plactice Iwing  studied is reflected in the

so-ca]]cd  cn}lanccd  jdicr [’i’]. ~urrcnt ~)racticc  illvolvcs  lnodcli]lg  c e r t a i n  ];arth

platform and transmission media  effects as consider  paranLcicrs  irl the filter. III

otllcr words, tl]csc  parameters arc allowed to affcd the covariallcc  of the estimated

state,  bui  arc ~lot thcmsclvcs  est imated,  l’hc cnhanccd  filter calls for i!)c]usion

of tlicsc parameters ilt the estimated state vector. WhcII  compared with current

filtering  l)racticcs,  tllc rcsu]t is increased accuracy in the state estimates [7]. This

filtering strategy is currently Lcing  tested using real flight data from Galileo [8].

‘J’lIc  cnhallccd  Kalman filter is utilized ill this paper.

‘J’llc approac]l  takcll IIerc is to utilize radio]netric  (l)op~)lcr  and rang-c)  data

ant] to establish l)avigatio~l  improvcmcllts  through the usc of adaptive  jikring

algorithms. ‘J’here arc bcllcfits to this apl)roach,  in addition to tllc systematic tun-

ing of tlIc  operatiol]al  filter. Suppose the process noise alld/or data noise profile

charlges  during tlIc  mission, for example, if the a( ccleratiorl  profile of the spacecraft

changes significantly  due to unmodc]cd  vcllting. ThcII, tllc IIccd for a non-labor
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i~imnsivc method to detect changes in the data profile and to point  to the source of

tllc cllallgcs  is clear. A Kalman filter bank (proposed here) will allow the analyst to

model several filters simultaneously and directly cc)mpare  the results automatically.

‘1’l)c filter bank will determine which filter is opel  sting optimally (where optimal

is prcciscly  dcfi]]cd ]atcr) with respect to IJIC measurement da,l a, thus helping t}le

process of sclcctillg  the filter parameters.

measurement noise profile cha]lgcs,  the fil

choose a different filter that, more CIOSCIY

For the case where tllc process aIld/or

er bank can  de-sclmt a given filter and

matches lkc currcl]t  environment. In

this way, ill addition to the cstablishrnent  of a systematic method to C11OOSC  the

opcratio~lal  filter parameters and to detect cnvitonmcnta]  challgcs,  the orbit dc-

tcmnination  process can be completed with fewer team members, wlli]c potentially

illcrcasillg  the accuracy and timeliness of the resu Its.

‘1’l]c adaptive csti]naticm  solution dcscribcd  ill this work SOIVCS the orbit dcter-

mill  atioll  problcm  very cfi’cctivcly given  (he real-world coIlstI ail]ts.  The adaptive

filter can  bc used as an cflectivc tool to assist the navigation cngillccr  in selecting

filter ~)aranlctcrs, thus allowing a closer nla,tc}l  of the filter paralnetcrs  to the true

values, lcadillg  to a potcntial]y  more accurate l~avigatioll  solut,io]l. In additiol],  tliis

method requires fewer hours of processing and analysis  and allows a smaller group

of analysts to dctcrminc accurate navigation solul ions. More importantly, the long

term objective of this study is to develol)  an adaptive filtering  methodology that

call bc used for processing of actual nlissio~l  data, It is sltow~l  in the subsequent

analysis  tl~at  this objective is successfully achieved.

Several mct]lods  were illvestigat,cd  in terms of ability to dcterlninc  both process

IIoisc and mcasurcmcl]t  noise parameters al}d to bc general cllough  to handle a

time-varyin,g problcm.  Since the Kalman  filter is already ill usc and is planl\cd  for

future usc for orbit dctcrmillation,  a met}iod  utilizing tltis  approach is desirable for
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illll~lelllclltatioll  masons, It was found that  the most desirable approach, in terms

of thmc constraints, is tllc Magi]] Kalma]l filter bank [1]. ‘J’his  approach ,  a l so

known  asthcMultiplcM  odclllstimationA  lgoritl]m (MhIl;A),  llasbecn  shownto

bca}~racticala  lgoritll~]~il  lsc)lvingre  al-worl(ll>  rol}le1ns[2  ],[~t],[4].  One important-

}Jroblcnltllat  can  bcsolved~nost  effectively using  the Ma,gill filtcrbankist  hat of

l~ypotl]csis  testing, which is to choose from a finite  set  of filters which hypothesized

filtcrill  tllcballki  stll(;corrcct  onc[5],  [6].  ‘I’llcl{allnallf  iltcrbal]ki  l~ll~lclncIltcd

in this study is utilized as a hypothesis tester. ‘1’he proposed mcthodo]ogy  is a

practical cxtmsioll  to currc]lt  navigation practices for inter~jlallctary  spacecraft ,

]n additio~l,  tllc cost of irltcgrating  this approach with tl}c current operational

cnllallccd Kalman filter is minimal. The Ka]man filter does not ~lcwd to bc modified

in al)y way to implement this scheme. All that is rcquil cd from the filter arc prc-

u~)da.tc  mcasurcmc)lt  residuals and t}lc covariancc  associated with these residuals

at each data point)  w]lich arc computed by the Kalman filter already.  Finally,

tllc assunl~)tio]ls  t}lat  arc required for applicatim]  of the filtcx bank arc the same

that govern tllc usc of a single KallnaIl filter. TIIus,  if tllc prob]cm is formulated

to work properly with the Ka]man filter, the filter bank  al)})roacll can be used

without nlodificatic)ll  [(i].

‘J’llc scenario chosen for this study is the Mars Patllfilldcr  mission, scheduled

for laullcll  i]) ])ccembcr 1996. Specifics c)f the mission plan, illcludi]lg  laullcll  and

arrival dates and the tracking scenario, are presented. A model was developed to

rcl)rcscllt accurately, but  with moderate complexity, t}lc actual data rcccivcd by

tl)c filter during a mission. This model, consist ing of tl]c s~)acccraft  state, solar

radiatiol~  pressure cflects, slnal]  unmc)delcd  accelmatioll  effects, transmission media

cficcts  and Eartl)  platform eflccts,  is used to gcllcratc tracking  data.

Various computational algorithms were studied to solve the adaptive filteri]lg
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problcm,  arid aJl the me thods  have  the cl]aractcl istic of incl casing ill conlputa-

tiollal cost as the ]Iumber of filter parameters to bc determined illcrcases.  For this

reason, it is desirable to detcnninc  only the most critical error sources and to con-

cclltratc effort ill tl]c al]alysis  on t}mse areas. The ICSS significant  errors will remain

as parameters ill  the filter, but will not participate in tllc adaptation. A special

type of covaria~lce  arlalysis,  or error budget analysis, is utilized here to catalog the

co]ltributiolls  of particular error sources or error source groups to t}lc overall csti-

matioll  error. ‘1’llc error budget is presented for X-band ral]gc  oIily, l)oppler  only,

arid ])oppkx  plus rallgc mca surcmcnt scenarios for the h!lars }’at}lfilldcr missio~l.

Results arc given for several difl’ercnt sets of ~loise  paran-wtcrs  includccl  in the

adaptive scllcmc. ‘J’rackillg  schcmcs  considered include rall~e cnlly and l)opplcr

o]]ly. ‘1’llc main result is the demonstrated ability of tile adal)tive Kalman filter

bank to dctcrmil~c  tlie underlying measurement and process l]oisc strengths. In

addition, tllc results for the changing noise stre~lgths  case show the ability of tllc

filt,cr

2

bank to detect cnviro~lmenta,l  and/or spacecraft charlgcs.

Mars Pathfinder Mission

‘J’l]c  Mars l’atllfilldcr  mission is the first of a series of 1OW-C,CWL rapid turnaround sci-

c]lcc missions  from NASA’s l)iscovcry  Program. ‘J’his  lnissio~l  will serve primarily

as a demonstration of kcy tcchno]ogics  and concepts

h4ars  using scientific lalldcrs. in addition, l’athfilldcr

payload.  IIlvcstigations  of the Martian atmospllerc,

for usc ill future missions  to

illcludcs  a sigrlificald  scicncc

surface ]nct,coro]ogy,  surface

geology and morpllologyl  and tl)c c]cmcntal compositio]l  of h4 artiall rocks arid soil

arc sc]]cdulcd  for l’athfi~ldcr.  A free-ra)lging surface mic,rorovcr  is also part of the

mission. ‘J’his  microrovcr  will be deployed by l’athfilldcr  to conduct technology

rdatcd  experiments and to serve as a mcchanisl n for ilistrulncllt  deployment [9].
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‘J’l)c mission is scheduled for the 1996 Mars launch opportu]lity,  with a 30 day

launcl)  window Lwgil}nil)g,  0]1 lleccmber 5, 1996 and ending oI) January 3, 1997.

‘J’hc arrival date at Mars is fixed at July 4, 1997, ‘1’he transfer time will vary from

212 days to 182 days, depending on the actual launch date. ‘J’he trajectory used

for this study corresponds to the January 3, 1997 launch date. Upon arrival at

Mars on July 4, 1997, the spacecraft will l)crform a direct cIltry into the Martian

atmospllcrc.  ‘J’o acllicvc  a larldillg,  a parachute is deployed along with a rocket

braking system and an airbag system. Aftm landing the primary surface operations

bcgi]l,  whic]l i~)cludes  deployment of the microrover [9].

‘J’llc illtcrplallctary  trallsfcr phase of the Mars Pathfinder lnission  is under in-

vestigation  llcrc.  q’hc adaptive filtcri]lg  approac}l  proposed for the i]ltcrplanetary

IIavigatioll  problcm  is not dependent on tllc Mars Pathfinder mission. The Mars

l’atllfi~]clcr  scalario is choscII  so t}lat  the adaptive filtcrillg  mctllod  could be tested

usillg  a realistic interplanetary missioll.  Epoch conditions arc kJ1own for the space-

craft and tl]c plallcts  o)] March 5, 1997. ‘J’he  data arc used ill this study lasts for

105 days from the cpocl],  or ulltil June 18, 1997. A plot of tllc l’;art}l, spacecraft

and Mars trajectories is shown in l“igure  1. ‘J’l]e trajectory characteristics (the

shaded portion of l“igurc  1 ) arc detailed in ‘J’able 1. l)uring  interplanetary cruise,

tllc scientific  illstrumcllts  will bc cllcckcd  but not  used.

‘J’l]c  i~ltcrplal]ctary cruise portion of the ]nission  bcgills  approximately seven

days after laullcll  (1,+7) and cllds  15 days before encounter (M- 15). The main task

durillg  ildm-l)lanctary  cruise is to determine the required corrcctio~ls  to the trajec-

tory to ensure the spacecraft arrives WI]CI1 and wllcrc it is scllcduled.  The nominal

missio~l  plan has  four ‘1’rajcctory  Correction Mal]cuvcrs (’J’CM ‘s), if required. ‘1’hc

first two mallcuvms  arc scl]cdulcd  at 1.+30 days (to correct for illjcction  errors)

a]ld 1,+-60 days (to correct remaining injection errors and ‘J’CM 1 errors). ‘J’he
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t})ird maneuver is scllcdulcd  for M-60 days (for entry  targctitig),  wllilc  the fi~)al

mal]cuvcr  is plan]lcd  for M-10 days (to insure  tlte ]andi~lg cc)l]ditions  arc met).

Thus t}lc data arc used here begins after the conlp]etiol)  of IIIC first two q’CM’s

and will illcludc the tllircl  TCM. The solution at t}}c end of data proccssi)lg  will bc

propagated to cncou]ltcr , which includes tllc fourtl)  TCM. ‘J’l]c  IIavigation  solution,

obtaillcd  after processing the data from tlJc 105 day interplanetary cruise, will bc

used to support the final ‘1’CM if the maneuver is required. ‘1’}le errors duc to the

fourth ‘1’CM will JIOt aflcct the navigation solutic)ll  significallt]y  [9].

2’l]c  trackil~g  scenario col}tains  data taken from the Deep Space Network (DSN)

34-m IIigll l;~lcicllcy  (IINF’)  Deep Space Stations (1)SSs) ]ocatcd  near Goldstone,

California (1)SS 15), Canberra, Australia (1)SS 45) and hfladrid,  Spain (1)SS 65).

‘J’llc  tracking schedule inc]udcs  onc pass of data for each  statioli  per week. The

tracking  passes arc started with 1)SS 15 on the first day, 1)SS 45 on day four

a.lld 1)SS 65 o]] day six. After each statio]l  makes one pass, six })asses (days) arc

skip~)cd before the next pass at that station is initiated. ‘1’bus, 1)SS 15 will next

track on day seven, 11SS 45 on day ten and 11SS 65 011 day twelve. ‘I%is pattern

is rcpcatcd  ul]til  tllc cnd of tl)c considered portion of the trajectory. The interval

Imtwccll  data points is tcn minutes with range and l)olq>lcr  data collcctcd  at the

same time. ‘1’llc minimum elevation angles  arc {)0° for 1)SS 15 and 1)SS 65, and

30° for 11SS 45. l)ata  points  for times whcll  tllc clcvatioll  a]lglc  is smaller than

these values arc rcjcctcd. All data poi]lts  that lrlcct  the requirements for the day

of tllc pass and tllc lnillimum elevation allglc  arc included ill tl]c  data set. These

criteria were set ill order to simulate t}lc spcciflcd  tracking  scllcclu]c 011 OI]C 4 hour

pass ~mr week at each trackillg  station during in{crp]anctary  cruise [9].
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3 Covariance A n a l y s i s

‘J’llc r e d u c t i o n  of tl)e cstimatio]l errors  iIl tile llavigatio~l  JJroblem is all a r e a  o f

s t u d y  t,hat  has reccivcd  co)lsiderablc  atlmltion  ill rcccllt y e a r s .  o n e  m e t h o d  o f

inl}~rovil]g ]Iavigation  accuracy is the usc of advanced data tylws,  suc}l as Very I,ong

Baseline lntcrfcromctry  (VI,B1).  ‘J’lie drawbacks to usi]lg advallccd data types is

their  expense due to cxtcnsivc  antenna til nc requircmc)]ts  and tllc usc of mu]tiplc

I)SN  sites simultaneously. For this reason, an cffo] t has been dircctcd  at improving

tllc ]Iavigation  techniques using radio I)olq~lcr  and ranging  data collcctcd using

NASA’s  I)SN [7]. ‘1’hc main attraction of these convcntiolla]  data types is that

tllcy are routinely collcctcd  in tracking, telemetry and command operations. Vor

example, radio l)opp]cr  data is available from colllmunicatillg  with the spacecraft,

making  tl~is  data a free by-product of tl]c  commullicatioll  li~lk. A])other  advantage

of tllcsc data types is tllcir  lc)ng history of usc for tracking. This is important since

the mcasurcmcnt  crrol models are well dcvc]oped  due to the large set of data from

several dccadcs  of missions.

II) order to improve the navigation accuracy using  convclltiol]al  data types, it

is desirable to dctcrmillc tllc significant error sources that co]ltribute  to tllc total

cstinlatio~l  error 0]] a particular mission. Once the most sigilificant  error sources

IIavc bccll  idclltificd,  more detailed work on those specific error sources can be

complctcd  with a goal of reducing their co]ltribution  to tlllc  overall error. !l’his  may

bc accon~plisllcd  in many ways, such as i] nprovi]lg  the matllen]atical models based

011 past cxpcricncc  or by using data at different frequencies to reduce frequency

dcpc~ldclk  errors.

‘J’llc mctllod  used to idcl]tify  the major error contributors is tllc so-called linear

covariance  analysis  [1 O]. Covariarlcc  analysis  call be used to study  changes in filter
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performance duc to configuration changes in the filter. Exanq)les  include study-

ing the effects of unestimatcc~  parameters and using incorrect apriori statistics OJI

tl)c overall state estimation error [1 1]. An error budget, CaII be developed which

catalogs the contribution] of a particular error source or crrcjr source group to the

total  )lavigatio~l  unccrtai]lty.  ‘J’hc error budget  identifies the most significant error

sources for furt]]cr  study. A result easily obtained from the error budget tables is

tllc scxlsitivity  of tl]c filter to variations in the input parameters. ‘1’lle error groups

collsidcrcd  here co~lsist  of spacecraft accelerations due to solar radiation pressure

and small IIo]]gravitational  accelerations (due to t,as leaks, thrust,cr  misalignment,

ctc), tracking  station })osition errors , refraction due to the trol~ospllcrc  and iono-

Sl)l ICrC, and errors ill

errors arc t}lc maj c)r

dctcrmillatioll  [1 2].

the Earth oricxltation  (pole motion  arid Uq’1 errors) .  These

contributors to tile estimation error in i]ltcrp]anctary  orbit

3.1 Error Budget Calculations

in gcllcral, the error budget  is a sun~lnary  of t}lc contributions of all error sources

wllicll aflcct tllc filter estimate at a specific time, whct}]cr  ll)odclcd  cxplicit]y or

]Iot, For  this a]lalysis,  it is assumed that t}lc filter model a)ld the truth model are

tllc same. ‘1’llis  implies t}lat tile filter model is an accurate rc~jrcscntatio~l  of tllc

real world.

‘J’llc model used ill the covariallcc  analysis is the same as tile model used irl

tllc simulation with tllc following exceptions. ‘1 ‘he covariancc analysis included

gravitat ional  effects  due to all plallcts  and the MOOII) wllilc  t}lc simulation con-

siders  o]lly cclltral body gravity, III addition, light time corrections were made in

tllc covariallcc analysis  that were neg]ectcd in  t)lc  simulation.  ‘J’lms,  t h e  covari-

allcc  analysis results arc based on a more accul  ate model tllall was used ill the
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sinlula,tioll.

Error budgets were clcvcloped  for the Mars 1 ‘at}lfilldcr  intcr]jlanciary  cruise

scc~lario and data schcdu]c  described earl ier  for  l)opplcr-o]lly,  ranging-only  and

l)o}~]~lcr-]>llls-rallgillg  data sets. The statistics fol the orbit determination errors

at the cnd  of the tracking were propagated to the IIominal  time of Mars encounter

and cxprcsscd  in tmxns of the B-plane coordinate fralnc [14]. ‘J’his  coord ina te

frame, also kllowll as the aiming plane, is defined by unit vectors S, 2’ and R .

‘J’IIc vector S is parallel to the spacecraft velocity vector relative to the target

planet (Mars) at the time of entry into the targc{  p]anct’s  ~;ravitational  sphere of

il]flucnce,  the vector T is pcrpcndicu]ar  to the target planet equatorial pla]le  and

the vector R is such that the three unit vectors form a rig;llt  lla]ldcd  coordinate

system. ‘J’hc miss vector B is the aim poil]t  for planetary encounter and lies in the

T-R pla])c.  ‘J’hc miss vector would be the point of closest al)l)roach  to the target

plal~ct if the target planet  did not clcflect the flight path of the spacecraft (i.e. tllc

p]allct  bad no mass).

‘J’llc statistics arc presented as a 1-0 uncertainty of the ]niss vector resolved

i]do  miss compol]cllts  El . R (normal to the ta]get  pla~lct equatorial plane) and

1? “ !7’ (parallel to tile target planet  equatorial plane), and a J -a uncertainty in

the lillcarizcd time-of-flight (I;J’OF). The I,TOF specifics the time of flight to

cncoulltcr  (point of closest approach) if ihc magnitude of tl]c  miss vector were

zero a]]d ddillcs  tl)c time from cncountcr. To convert the 1 ;J’OF to a distance,

tllc llypcrbo]ic  approac]l velocity is required. For the Mars l’athfindcr  mission

sccllario, tl~c  IIypcrbo]ic  a])proach  velocity is 5.b2 kn~/s. ‘I’l Ic miss vector, or the

dista]]cc from tl)c cclltcr of Mars wl)crc  the spacecraft crosses i,llc  target plane, is

4550 km oriented 201.8° clockwise from the T axis [9]. Plots of dispersion ellipses

ill tl]c  ILplallc  are made for cacll case to illustrate the colltributiolls  of cacll error
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source to the overall error.

OIlly  a summary of the covariance  analysis is presc]lted IJcrc.  More detai led

illformatiol]  o]] this al)alysis  can be found in Burkhart et al [1 3].

3.2 Doppler-Only Case

I’lic  error budget  rcsu]ts  for the Doppler- only case are s}1ow]1 ill q’able 2. These

rcsu]ts  arc the magnitudes of the 1~-plalle  dispcrsi[ms  about  the nominal aim poil]t

for planetary orbit insertion for each  filter (truth) model error source (in a root-

mcar]-squa,re  sense) and for the total  filter error. The Doppler case shows that

tllc 1? “ R component of the miss vector is detcnnincd  to about 25 km and the

1? . T component of the miss vector is dctcrlnillcd  to about 20 km. The 1,’I’OF

is dctcrmillcd  to about 7 seconds (aboul  42 km uncertainly in position). Using

1 )opplcr  data alone, the result dots not achieve tllc desired accuracy. IIowevcr, t}lc

accuracy is cnougl]  to CIISUIC the safety of the mission [9].

‘1’l)c plot of tllc 1 -a aiming plane disl)crsion  ellipses for tllc I)opplcr-on]y  case

is sl)own in Figure 2. ‘1’he ellipses shown include the total filter result (all error

sources)  a?ld tllc ellipse for cacll error source individually. ‘J’llc  scmimajor axis

of tllc filter error ellipse is almost pcrpc]ldicular  to tl[c  line connecting the aim

point  (tllc origin of tllc plot)  and the celltcr of Mars. ‘1’}le largest contributors to

tllc overall error arc t}m solar pressure, the lloll~,ravitatiollal  acceleration alld  the

ltartll  oricllta,tion  pararnctcrs.

3 . 3  R,ange-Only  C a s e

‘J’hc error budget results for t}lc ralge-o]lly  case arc show]) in Table 3. For this

case, the 1?. R componcllt  is determined to about 26 km and the B o T’ component

is dctcrmillcd  to about 17 km. l’hc L’1’OF is dctcrn]illcd  to about 0.6 seconds
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(approximately 3 km). From the geometry of the the trajectory (see Figure 1) it.

caI) be seen that the Earth-slmcecraft  ransc component lies in tllc plane including

the 1? “ T’ and I;J’01~ d i r ec t ions . The colltribut  ion to the ovcra]l  error budget

due to most of tl]c error sources is much smaller {hall the contribution due to the

mcasurcmcnt  Iloise. This is primarily due to the sl}arse rallge data collected. Most

of tl~c errors ill this case will probably be covered up by tile measurement noise

wl)cn adaptation) is attcm~)tcd.

T]]c plot of the m ror ellipses for the range only case a~)pcars  ill Figure 3.

‘J’hc biggest contributors to the overall error arc the ]Jongravitational  accelcra-

tio~ls al]d nlcasurcmc[lt  noise, with smaller effccis  due to tl)c  solar pressure and

troposphere similar ill mag]litude.  lkth oricntai  ion is much  less important than

for tllc Doppler-on] y case and the mcasurcmc]lt  noise co]lt  ributcs  more to the

range-ollly errors tha~l to the l)opplcr-on]y  case. In addition, the I Iongravitational

ac.cclcratiol)s  col]tributc  more to the ovel all error for tl]is  case than the l)oppler-

o]lly case. ‘J’hc mcasurcmcnt  noise ellipse is cn-icnted  slightly diflcrclltly than the

otllcr  major error c]lipscs,  wliich  is also different from the l)opl)lcr-only  case,  where

the n~casurcmcl]t  error ellipse  was oriented  c]oscr to t]lc major error sources. As

before, tile scminmjol  axis of the error ellipse is nearly pcrpc]ldicular  to the aim

point-Mars equator liJlc.

l)UC to tllc missicln requirements for Mars Pathfinder, the amount of data col-

lcctcd is muc]l less than in past missions. The contribution to tllc total error by

tllc mcasuremcllt lloisc  seems large considering 1 he in}icrmlt accuracy of the mca-

surcmcnt. IIy  cxtcndillg  tllc lc~lgt}l  of tllc tracking passes ill tile current scenario

to a,pproximatcly  double tllc number  of data points, a sigzlificant  reduction  i)] the

contribution to tl]c total ul]certainty  due to mcasureme~lt  noise is experienced: a

reduction of tllrcc kilometers in the 11. It direction, half a kilometer ill tllc B . T



direction and tl)rcc quarters of a kilometer in the 1.7’(3J’  dircc.tioll.

3.4 Doppler Plus Range Case

‘1’IIc error budget results for the case where both ])opplcr  and rallgillg  data are

used is prcsclltcd  ill tabular form in g’able 4. For this case the B . R componen t

of tl]c miss vector was determined to about 17 km and tllc IJ .1 con~poncIlt  of

tllc miss vector was dctcrlnincd to about 12 km. q’hc IYJ’OF was dctcrmincd to

JIcarly  0.4 seconds (nearly 2 km in positiolial  uncertainty). As for the other cases,

noll,gravit,atiolla]  accclcratiolls  were the dominant error group, with solar pressure,

l’;artll oricl]tatioll  aljd  mcasurcmcnt  noise as the IIext  most significant  error source

groups.

‘J’hc error c]lipscs  for this case arc p]ottcd ill l“igurc  4. ‘J’llc additio]l  of Doppler

data raises tllc error contribution] from F;arth  oricntatiol]  a J]d iol]ospllcrc  error

groups com}~arcd  to the range data alone, but Dopp]cr  data helps reduce the

col~triLution  from tllc other error source groups except for tllc range biases and

results ill a much rcduccd  overall error than rallgc data alollc.

h’rom the rcsu]ts  cjbtaincd, it is clear that fhc goal of reducing the overall

llavigatioll  error cm] bc best achicvcd  by concentrating effort o]~ spacecraft acccl  -

cratiolls  (solar pressure and random nongravitati(mal  accclcratio]ls),  mcasurcmcnt

noise. ‘J’IICSC errors will be the focus of tllc adaptive filtcrillg.

4 Adaptive Filtering Approaches

AI1 implicit assumptio~l  ill tl]e Kahnan filter is tJlat all of the system parameters,

including L}lc state I,rallsiiion  matrix, {llc measurement ~)al tial  derivatives wit])

respect to the state, and the process and mcasul emcnt  noise matrices arc known.

1]] gcllcral, this is not the case. Often there arc paramctms  not included in the

14
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filter model that  ilifluc])cc  tl)c measurements, This results iIi a ~nodeling  mismatc]l

bctwec]]  the filter allcl  the measurements w]lich afl’ccts tile state transition  matrix

and t}ic mea su rcmcnt  partia]s. in additio]l,  the process Iloisc and measurcnlcnt

IIoisc matrices arc rarely precisely known. For tllesc reasons, it may be desirable

to al)p]y  all adaptive filtering scheme to tile problem at hand.

‘]’hc gcllcral problc]n  to be solved is described by

wllcrc Zi is the state vector, @i is the state tral Isition  matrix, Ui is the process

noise  vector, vi is the measurement noise vector al]d Ili is the lncasuremcnt  matrix.

}Iotll  tii and vi arc u]lcorrc]atcd  zero-mcall Gaussian white nc)ise  scqucllccs  with

wllcrc Q is a ~lon]lcga,tive  definite matrix and R is a positive dcfillite  matrix, both

with ultk~low~l  true values. The stanc]ard filtcrinr,  problcm  is to cstinmtc  Zi based

OJ1 tile obscrvatioli  set Y* == {y l, yz) . . . , Yi},  WJKXC the cstill-latcd values  will bc

dc]lotcd ~i. ]JI this case, the discrete Ka]man fi]tcr  is used:

“ ‘-) is the lllcasurcmcnt  residualwllcrc I{i is tllc ]<alman  gain and Vi = Yi –- Iit%i

wit]] covariallcc HP\-)  ll~’+IL ‘J’llis  solution is optimal based 011 exact knowledge

15
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of Q and  R. IIowcvcr,  since this is not ihe case  here, an adaptive filter will be

used to llclp  determine input,  values for Q and R

‘J’llc first step in selecting an aclaptivc  filtering  scheme is to study the tcch-

l}iqucs  availal)lc. l]ascd on tllc discussion present cd by Mcllra  iIl 1972, adaptive

filtcri])g  Jnctllods  call be divided into four groups: maximum likelihood, corrcla-

tioJl

not,

4.1

covaria~)cc  ma tch ing  aI]d Baycsiall  [15]. Covariance  matching tcchlliqucs  will

)C disclJsscd here.

Evaluation of Adaptive Methc)ds

‘J’lIrcc mail]  adaptive estimation approaches were t:valuatcd  duri~lg tliis  study. T}IC

dctai]s of all cxtcIlsivc  literature survey caI] be found iI) ]Iurk]lart [1 6].

‘1’lIc first approach il]vcstigatcd  was a maximlIm likc]illood  lnctllod  proposed

by Meyers aIld ‘J’al)lcy [1 7). ‘J’his  approaclk  uti]izcs  a so-called Ada])tive  Limited

Memory Fi]tcr (A1,M 1“) which involves tlIc formulation of unbiased estimates for

tllc Iloisc variances and covarianccs (both arc assllmcd II OIIZCI  o in the paper) and

computiIlg  estimates scqucI]t,ially  based on a qser-spccificd  set c)f data. TIIC Meyers

aIld ‘J’ap]cy approac]l  does IIot appear to offcJ’ a sigJlificaJlt inll)rovcJncJlt over tl!e

curJ’cJlt  opcratioJlal a})proac]l  iJ”J terms of Jnaking  the tuJliJlg pJ’ocess  Jnorc systcJn-

atic.

!I’IIc scco]ld approacl]  tested was all innovation corrclatioI) al)~)roacb formulated

by Mchra [1 8]. ‘J’lic original Mchra  formulation, which is for a linear time invariant

problcm,  was tested on the Mars ]’athfiIldcr  ildcrplanctary  orbit dctcrmil]ation

l)roblcmo W1]CI1  tllc system IIas small tilne  variat ions, tllc a~)proach  is gcl)crally

rol)ust  cl)ougll  to be cficctivc. IIowever,  ill tllc orbi t  dctcrlnillatio]l  problcm, the

)ncasurcmellt  matrix l.ii has large variatiol]s  over each track il]g pass and from OIIe

pass to tl]c  llcxt.  As cxpcctccl,  the results from direct app]icatioll  of Mchra’s scllcmc

16



wcxc ]lot very good. Mellra’s  scheme was tl)en  re-formulated  as part of this study

for time-varying systems and applied to the interplanetary orbit determination

problcm,  again  without good results. Other authors (il)cludillg  W]allger  [1 9])

IIavc gcmcralizcxl  hlcllra’s scllelmc  for time-varyillg stationary problems without

good results. ‘J’llis method is apparently best suii cd for time i]lvariant  problems,

and is not a})plicablc  to the interplanetary orbit dctei-millatio))  problcm.

‘1’llc final approach evaluated was a 13ayesian  ] Ilethod  formulated by Magill  [1].

‘1’llc approac]l  is to im})lcn-mlt a bank of Kalmarr  filters, cacll modeled with diffcr-

cld values of a fil]ite  ullkllown  paramcte] set. ‘l’tie mctllod, ill its original form,

computes tllc wcigllted  sum of tllc estimates froll] each filter 10 determine the op-

timal adaptive estimate. Another way tile Magill filter IIas bcml applied is as a

multiple llypothcsis  tester.  ]n this use, the output of interest is the weight for  each

filter ill tl]c bank,  wllicll is used to dctcrmille  which  hypothesized filter in the bank

;s tllc correct o]lc [5].

4.2 Adaptive Kahnan  Filter Bank Develo] )ment

13ascd  011 tllc literature review and preliminary simulation studies, the adaptive

est imator implcmcntccl  in this work ;s the ada~]tivc  schcmc first introduced by

Magi]] [1], ‘1’his  mctllod  ;s known as simply the l<alman fillmr  I)allk or tlie Multiple

Mode] lktimatioll  Algorithm (MM EA), shown irl Figure 5 [5]. ?’he main reason

this approac]l  was selected ;s that it sol\7cs this pa] titular problcm  well. ]n addition,

tllcrc arc 1]0 rcstricticms beyond thc)se required for usc of t}lc 1< alman filter that are

required to ;m})lemcnt  this approach [6], l“inally,  this approac}i  fits quite well with

t}lc current orb;t  determination approac.hcs  in use for interjjlanetary  lJavigation.

Il]~~)lclllcIltatioll  of this ap})roach  will not rcquilc a new filteri]lg;  methodology or

cxtcllsivc modification to the current filter.
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‘J’llc problcm  to bc solved lmay bc stated as follows: An estimate is desired for

a sampled-data, Gaussian process, which may be c.orruptcd  by additive noise, such

that  tl)c estimate minimizes some performance measure. ‘1’l]c observed process is

a function  of some u~lknown parameter

set of kllowl] paramct,cr  vectors [1].

Assume  that tl)c  parameter vector a

vector, o, which  is a member of a finite

is a random variable that may or may Iiot

bc Gaussia,rl.  ‘1’his  inl~llies  that a is an unkllown  constant for a specific sample run,

but ]Ias a known statistic] distribution, The optimal cstilnatc  2~ is a weighted

sum of tlIc individual Kalman filters, wit,}l  each filter opcrati]lg  with a diflcrent

value of a. ‘J’IIc weighted sum is given by

where p(cri  lg~) is tl]c  discrete probability for ai conditioned 011 t}ic nlcasurcn~c~}t

scqucn]cc ~~. T h e  p r o b l e m  ]]OW is rcduccd  to Ihe dctermillation  of the weight

factors  p(CYI ly~),  p(az  ly~), etc. As the mcasurcmcnt -process evolves, these values

will cl)allgc  wit]) cacll  step recursively. As more I ncasurclncl]ts  arc proccsscd,  tile

kl)owlcdgc  of tllc state and the unknown  paramete r  a will illcrcasc. If as time

progresses it is possib]c  to learn wllic}l  stochastic process is observed, tllcll  it is

rcasollablc  to cxl)cct tllc optimal cst)imator  to collvergc  to the ap})ropriatc  filter for

that  process. 111 terms of ihc block diagram in Figure 5, tl]c wcighti]]g  coefficient for

tile true filter will cc)nvcrge to onc whi]c  all of the lest will convcrg;c to zero []], [20].

‘J’llc wciglltiTlg  factors p(cxily~)  are tllc adaplivc  feature of this estimator [1].

[Jsing  Hayes’ rule, tllc wcigl~ts  arc computed via

[

PMIW)P(W)
l(~i M) ‘=  -q;-—----1)!j=l P(?/il~j)P(~.i) ‘

i=:],~,.. J.,J. (2)
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‘J’l)c values for p(ai) arc assumed krlowlk, so al] l,he terms !II t]lis relation are known

cxccpt for p(yi  [cYj). T o  c o m p u t e  tile value for p(y; I@j), tll~  pro~=+es ~ and Y

will be assumed to be Gaussian. In addition, the mcasurcmmlt  sequence y; will

be assulned  to be a sequence of scalar nmasurcmellts  YO, YI, . . . . y~. W}ICII tl)CSC

III gcllcral, p(y~la~) will be diflcrcllt  for each filter in t~l~ barlk.

P(Y;-1  l~j) (3)

1]1 tile h4ars  l’atllfil]dcr  problem, only tllc apes.teriori probabilities p(ailyjj for

cacll IIypotllesis  arc computed by the filter banli. As tile filter bank processes

data, the wcig}~til)g factor for the best filter will illcreasc while the other weighting

factors dccreasc  [5]. For t}lis  problem, the Kalman filters alc assumed to have a n

ullkllown  nmasurcmc]lt  noise variance, in addition to possib]y  unknown process

noise paramclmrs. All other parameters and models bctwccl]  the filter and the

cllviro]lmcllt  arc the same. ‘1’hus tllc MMl~;A will IIe detcrmillil]g  tllc filter with tllc

parameters that  arc the closest to the values from the cllviron]ncnt,  as dctcrmillcd

from the mcasurcmcnts.

!5 Results

]tcsults from scvcra sets of cases arc s]]own. ‘1’hc first set c)f results arc for range

cases w]lcre  all ~loisc  pararnctcrs  arc inc]udcd in tile filter, but o]lly a sclcctcd group

of parameters arc adaptivc]y  clctcrminecl.  ‘1’hc cas(:  prcsclltcd  here is for adaptation

of mcasurcmcl]t  noise alld  NGA parameters. In addition to the rallgc  cases, several

cases wllcrc IIopp]cr  data is proccsscd  arc shown. The final case shown involves a

challgc  ill tllc llo~lglavitatiollal  paramcte] during tracki]lg.  Rallgc data is utilized

ill this study along with a high-gain antenna , which reduces tllc random noise
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com])oncnt  of tllc )loisc profile. ‘l’his allows the Kalman filter lm~lk to run over a

larger set of data [1 6].

All results presented arc for range measurements only and for Doppler mca-

surcmcllts  o~lly. The weightil]g  cocfflcicnts  for cacll filter in the bank arc presented

in tllc cncountcr  plane along with the esti]natcs,  computed erlor covariallces  and

true values. All error ellipses plotted for the filter bank  results show 1 -a errors.

‘J’llc  ellipses for tllc simulation results are oriented diflcrmltly  than those for the

error budget analysis due to the inclusion of planetary gravity in the analysis,

wl]ich was not included in tllc Mars Pathfinder si mulatio~l.

5.1 Range C a s e

‘J’l]e first case co)lsidcrcd  adapts  the non gravitational accclerat ion parameters and

tllc mcasurcmcmt Iloisc pararnetcr. A ba~lk of 15 Jilters is set  up with the scaling

from tl]e IIonlilial  values as s}iow]l ill Table 5. Tile filter IIurnl)crs  are determined

as sl)own in tl]c  talk. For example, filtel 14 has a mcasurcmcntl  Iloise that is ten

times the nomil)a]  value al]d a NGA steady-state variance illat is five times the

liominal  value.

‘J’lic  weightil]g  factors for this scenario are plotted i~l l’ig,urc 6. ‘J’}lis plot SIJOWS

I} OIIZCISO weights for filters 6, 7 and 8. The weight  for filter 8 is l)carly  u~lity, while

tl)c  other filters llavc  negligible wcig}lts. ‘1’hc filters ill tlic bank that do not have

tllc correct mcasurcmcnt  noise paralnctcr  arc e]iminatcd  quickly by the h4MIlA,

with the remaining data tmforc  a bank is chosen  used to differmltiate  the process

IIoisc values for the flltcrs with the correct measurcmc]lt  ]Ioisc parameter.

‘J’l)c  cncou])ter  plane estimates and c.ovariallccs  for filters 6 through 10 arc

s]]own il] Figure 7. l’or this case, filters 6 and ‘i appear to I)c quite CIOSC to the

trut]l. Viltcr 8, with a slig;lltly  higher weight  slid t}le correct filter, had slightly
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worse estimates. Since  these results  are basccl cm a single realization of the random

processes, Monte Carlo analysis with different realizations of tl]c  random processes

was conduckd  to verify  the expected results. These Mo]ltc  Carlo results are pre-

sel)tcd  in IIurkl]art  [1 6].

5.2 Doppler Case

‘1’lle l)oplller  case adapts the nongravitational acceleration parameters and the

nmasuremm]t  noise parameter. A bank of 15 filtels is set up with the scaling from

tile nominal values  as sllowl)  in Table 5 for the range case.

‘J’lle weighting factors for this scenario as-e p]ol ted in Fi,gurc 8. This plot shows

~lol]zero  weights for filters 11 to 15. Tile weight ior  filters 11 and 12 are approxi-

mately 0.4, while  filter J 3 has a weight near 0.25 and filters 14 and 15 have weights

of shout zero. As Lefore,  the correct filter is filter 8. ‘J’bus, for this case, the

filter does nc)t co~lverge to the correct filter. ‘1’}lese  results for tllc l)opplcr  case

arc not as conclusive as for the range  case. Problems with tllc formulation of the

1 )opplcr  measurement duc to linearization and the diffcrcllccd  range formulation

arc apparcld  from tllc rmults. ~’lle filter chose])  by the filter  bank has similar or

smaller process noise and larger mcasure]nent.  noise cornpamd to the ellvironmcnt.

‘J’llc  c~icounter  p]at]e  estimates and covarianccs for filters 8 and 11 through 15

are sI1ow]1 in Figure 9. For this case, filter 8 ap})cars  to be tllc best filter.

5.3 Study of Noise Parameter Variations

The final  run prcsc]lted  invo]vcs simulated data with a cl)an{(c in the nongravita-

tiollal accclcratioll  steady-state variance after approximately half of tllc tracking

scgmcl]t  is comp]cte. ‘J’lic parameter cllmlgc  rc})resel)ts  a })ossihlc valve leak after
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a TCM or some other change in the force IJrofile of the spacecraft. This variance

is assumed constant for the first part of the trackilig.  After 62 days of tracking, or

just after the Mars l’athfindcr  ~’CM 2, the parameter is changed to a new constant

va]uc.  ‘1’his  situation represents the effect  of a thl ustcr leaking after it is fired for

the ‘J’CM, a leak in a fuel line, or some other })hcnomcna  related to a thruster

nlalfullct,  ion. ‘J’IIc process noise term is scaled by 10, which corrcspo~lds  to scaling

the NGA variallcc by fi~. ‘J’I]c scaling was chosen to be suc]l  t}lat  the correct

filter (after tllc variance change) is no longer part of tllc ballk  of 15 filters (see

‘J’able 5), 1]1 this way, the case  will illustrate that the bal]k  will converge to the

filter o])crating  the closest to tllc data’s noise profile. All error sources are included

ill tl]c simulation.

‘J’l)c wcig]lting  factors for each filter are shown  in F’igure 10. For the first 60

days of trackillg,  the filter is converging tc) filter 8, which is tile correct filter. After

tllc cllallgc  in tllc variance, the filter quickly selects filter 9, which has nominal

values for all variances except a scaling on the NGA of 5. It is thus S11OWI1  that

tllc ba.~lk is able to detect changes duc to unmodclcd  thruster variations.

6 Summary

‘JTllc  adaptive Ka]lnall filtering methodology was developed using tllc enhanced

Kalman filter and tile Magill  filter bank . ‘J’hc approach was used to ada~)tively

dctcrmillc tllc steady-state noise variances in the states for the Mars Pathfinder in-

tmrplanctary  cruise mission. ‘J’racking  scenarios used ill tllc adal)tive  study included

rallgc o]lly a~ld Doppler only data.  l’hc cases  studied were dcl,crmincd based on the

error budget  results, where the most significant errors for cacll tracking scenario

were found.

ILxults  for the range cases show that,  the adaptive algorithm cliooses  the filter
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wit]] tllc same para~nctcrs  as the simulated data.  Cases w}lcrc tlmrc was no clear

winllcr were sliowli to liave  scvcra]  filters with noltzcro  weights and similar pcrfor-

mar]cc.  S]nallcr error sources arc more difficult to dctcrmi]lc,  lcadil]g  to selection

of 110 sir]glc filter, but rather several wit]] similar performance. IIasccl on these

results, tlIc filter bank will be a useful lmc)l in tllc tunil)g  ~]roccss  for the opcra-

tiol]al  filter. 1)) addition, the bank is useful for f he determination of changes ill

the tracki~lg  data, giving some warning of potential problc]ns  such as a thruster

malful]ctio~l  or some other cllangc  in the acccleral ion profile of the spacecraft.

]Lcsults  for the l)opp]cr  cases are less conclusive. One l)rohlcnl  with this for-

mulation  of the IIopplcr measurement is the effect  of roundoff  errors duc to the

linearization and t}lc diffcrcl]ccd  rallgc formula. l’or exam})lc,  the range values arc

o]) tl]c order of 108 km. ‘JTllc measurenmlt Iloisc on the l)opp]er  measurement is

0.01 mm/s, or 10 -8 k m . The diffcrcncc  is 16 digits, or near tllc numerical limits

of a 64 bit llumbcr.  111 addition, the differenccd  range formulation implcmcntcd  in

tllc partial derivatives and the data generation lnay bc suscc})tib]c  to diffcrcnccs

duc to l’;artll rotation  froln  the start to the cnd of the trackit~g  pass. Onc way to

address tllcsc prohlcms  is to implement a ~nore tlicorctically  correct version of the

rallgc rate mcasurcmcnt.  III addition, an extended Kalman filter, whicl) dots not

invo]vc  a lincariza,tio)l  about,  a rcfcrcnce  trajcctol y, may }lcII)  this problcm  as well.

‘1’l)c 1 )opp]cr  results ill genera] SI]OW that filters with larger mcasurcmcnt noise are

cI)osc]],  while tllc ot}ler filters have zero weights. 111 most cases, the filters with

correct or smaller process noise are choscl],  as fol the range case.

A ]lcxt  step is iln~Jlcl~~cl~tatioll  of the filter bank for usc in processing actual

mission data. ‘J’he proposed method could bc used by the navigation team mem-

bers making  tllc individual runs to systematically climiliate  i~lcorrcct  filter models.

‘1’liis  ccmld bc complctcd  by several individuals illdcpendcntly,  with comparisoll  of

2’3
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results after procmsillg  is complete.

Onc additional advantagcist  heobviouspara]lel  co~~ll>utillg  })ossibilitics  with

t,l)is approacl). ‘1’}lis  approach can be implemented using searc}l  methods (such as

gcllctic algorithms) to update the filter ballk for operatiol]  ill all iterative fasllio~l.

Tl]csc genetic algorithms call be implemented easily usillg  t})c filter bank and can

bc implcmcntcd  ill a parallel processir[g  wlvironmcnt.

‘1’llc Ka,lmall  filter bank is a method that has a successful history in real-time

applications such as power system fault dctectiol  1 , image promssing and tcrrain-

hcig]lt  correlation for helicopter navigation. 11 has becll  S}]OWIJ here to also have

applicatio]l  in il]tcr})lanctary  orbit determination.
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Tab]c 2: Error Budget  -1 )opplcr  Mcasurelmellts
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Table 3: Error l~udgct  - Range Measuremcl)ts
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Table 5: Scaling factors: Measurement and NTGA l’aramcters
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